品玩

科技创新者的每日必读

打开APP
关闭
deepzengo

顶尖的围棋选手有很多,但顶尖的围棋AI似乎只有一个

不是所有的围棋AI都叫AlphaGo。

liuxuan

发布于 2017年3月23日

3月23日是首届世界围棋精英赛的最后一天,参赛的中日韩代表选手分别是芈昱廷、井山裕太和朴廷桓,三位选手轮番对局三天,除了彼此之间要分出高下,还要分别对战日本的围棋程序DeepZenGo。

DeepZenGo的开发者加藤英树在去年12月接受韩国《东亚日报》采访时曾信心满满的说:明年3月进行的世界围棋精英赛,DeepZenGo有信心击败中韩日三国的最强棋手。

然而面对三位顶尖选手,DeepZenGo最后的成绩是两败一胜,前两局被芈昱廷和朴廷桓绞杀,最后一回合执黑中盘胜井山裕太,扳回一局。这次比赛虽有赢面,但是前有Master横扫个中高手的范例,DeepZenGo胜1输2的表现并不太出色。

 DeepZenGo对战中国选手芈昱廷
DeepZenGo对战中国选手芈昱廷

虽然此前有AlphaGo战胜李世石的先例,但AlphaGo并不能代表围棋AI的普遍水平,DeepZenGo的开发者加藤英树在前两轮输赛后都表示特别遗憾,但是其实结果并没有出乎大家的意料——19日在东京落幕的第十届UEC杯世界计算机围棋赛中,DeepZenGo就不敌腾讯研发的“绝艺”,曾经称霸UEC的黑马这次错失了冠军。

去年3月,来自DeepMind的AlphaGo以4:1的成绩战胜韩国围棋九段李世石,这是人工智能首次在围棋领域战胜人类高手,引起世界范围空前的关注。但在这之前,机器在围棋领域的学习已经超过十年,从2007年第一届UEC杯开始,研发团队就不断发掘计算机程序在围棋项目上的潜力了,DeepZenGo的前身Zen就是这其中一个。

2006年日本游戏工程师尾岛阳儿开始研究围棋算法,写出了最原始的Zen。到了2009年,蒙特卡洛算法(Monte Carlo method)开始大面积引入围棋程式,成为了机器下棋的主流算法,也帮助Zen拿到了第一个国际大赛冠军。

棋类游戏有一种最原始的算法叫穷举法,穷尽所有可能进行枚举——在下棋的时候把所有会出现的情况全部过一遍,总能找到一个最优的解法,不管是对五子棋,还是象棋或国际象棋。穷举法给计算机带来的优势都很明显,早在1997年IBM的“深蓝”就用穷举法战胜了国际象棋世界冠军卡斯帕罗夫。

但是对于围棋来说,其最大的魅力正在于在简洁的规则下,有无穷尽的策略带来无穷尽的变化。这样的情况下,依靠低效暴力的枚举并不能抵过一个专业棋手的经验和判断。蒙特卡洛算法的引入便是为穷举增加了一些随机性,缩小需要枚举的范围,在随机范围内寻求最优解即可。相当于在一片果园中要找到最大的那颗苹果,比起原来一棵树一棵树的找,变成只挑一块区域抽样找,最后找到的不一定是最大的那个,但一定是所选范围内最大的一个。

虽然对穷尽所有的枚举有了一定的优化,但是蒙特卡洛算法在本质依靠的还是并不高明的列举,这样的算法只能在一定程度上进行优化,但并不能带来突破性变化。所以仅依靠蒙特卡洛算法导致许多围棋程式一度陷入瓶颈,包括Zen、法国的“疯石”、韩国的“石子旋风”在内的许多算法都依然无法匹敌高段位的专业围棋选手。

AlphaGo的胜利像是在围棋算法这潭死水中放入一条大鱼,让围观群众错愕的同时重新活泛了业内同行的热情。比赛一个月后DeepMind便在《自然》杂志发表论文公开了Alpha Go革命性胜利的一小部分秘密:深度卷积神经网络的引入。

 AlphaGo每走一步棋,会列举250步潜在可能
AlphaGo每走一步棋,会列举250步潜在可能

AlphaGo在蒙特卡洛算法的基础上构建两道神经网络:一道是策略网络,负责对棋局进行评估;一道是价值网络,判断应该在哪落子。这对于传统围棋算法最大的价值在于节省了蒙特卡洛算法的搜索空间。还用找大苹果举例的话,就是会先根据经验判断是不是应该找一块阳光好的地方,再判断哪块阳光好,找到大苹果的几率大。

神经网络打破了机器算法和专业选手之间的差距,也为围棋算法优化提供了新的思路,包括加藤英树在内的许多开发者都在Google的论文之后把深度学习引入围棋算法。Zen在经过了深度学习升级之后也改名为今天的DeepZenGo。

但Google在论文中公布的信息仍然只是AlphaGo的冰山一角。尽管用了同样的基础架构,但是DeepZenGo距离AlphaGo仍然有很大差距。首先是硬件不在同一水平,AlphaGo拥有1920个CPU、280个GPU,而最新的DeepZen 14.0版本的配备是44个CPU,4个GPU,这个差距相当于AlphaGo坐着火箭起飞的时候DeepZenGo还在骑共享单车。

其次是算法的差距,AlphaGo共享了一份教材,但是各家的学习方法不同也就导致学习效果的不同。AlphaGo虽然研发时间不如DeepZenGo时间长,但是在深度学习上Google已经有了7年的经验,DeepZen即便引入了神经网络,模型训练的时间和量都远远不及AlphaGo。

而无法对抗AlphaGo的DeepZenGo在众多围棋计算机中已经数一数二了,如果不是“绝艺”横空出道,它仍是这次UEC杯的第一,但如果连DeepZenGo也很难跟上AlphaGo的脚步,那其身后更多的AI小选手只能面临被淘汰。

如同任何一样前沿技术,并非所有人都能因为跟随“潮流”而获利,除了几位掌握核心技术的佼佼者能够推动浪潮,更多的追随者面临的还是被浪潮吞没。有传闻说这届的UEC杯就是最后一届比赛了,大概也是因为这样的竞争没多少意义了。

小玩家被淘汰,大玩家会继续竞争吗?也不见得,据说AlphaGo会在今年四月和号称目前最强的中国选手柯洁对战,赢了便会退出围棋界享受无敌的寂寞,然后将精力放在其他技术的攻破上,比如去年十一月开始在星际争霸游戏中的尝试。而游戏公司出身的DeepZenGo,可能还是会首先保住平民级游戏的这一战场,和群众打成一片,也未尝不是一条好出路。

下载品玩App,比99.9%的人更先知道关于「deepzengo」的新故事

下载品玩App

比99.9%的人更先知道关于「deepzengo」的新故事

iOS版本 Android版本
立即下载
liuxuan

这家伙很懒,什么也没留下,却只想留下你!

取消 发布
AI阅读助手
以下有两点提示,请您注意:
1. 请避免输入违反公序良俗、不安全或敏感的内容,模型可能无法回答不合适的问题。
2. 我们致力于提供高质量的大模型问答服务,但无法保证回答的准确性、时效性、全面性或适用性。在使用本服务时,您需要自行判断并承担风险;
感谢您的理解与配合
该功能目前正处于内测阶段,尚未对所有用户开放。如果您想快人一步体验产品的新功能,欢迎点击下面的按钮申请参与内测 申请内测